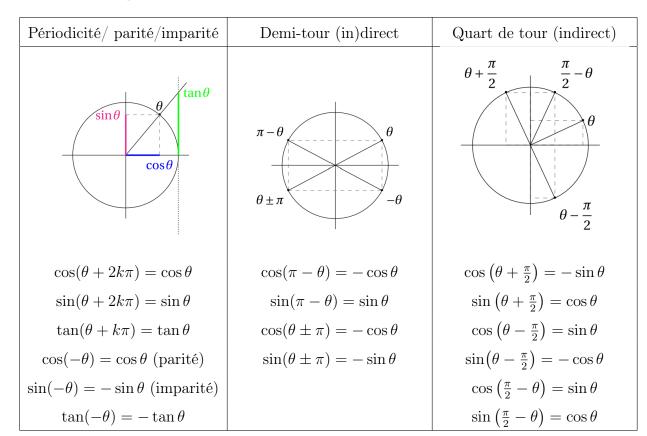
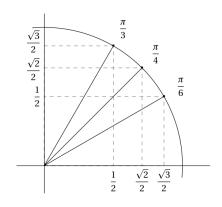
Fiche de Trigonométrie

Cette fiche est un complément à celle disponible sur Moodle.

Cercle trigonométrique, périodicité et symétries



Valeurs remarquables



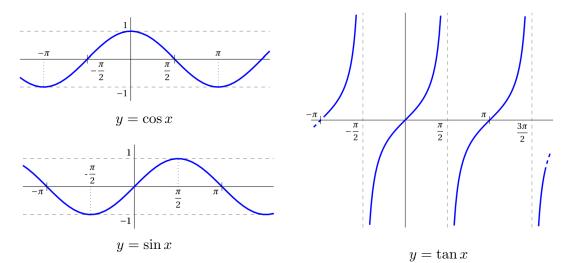
		π	π	π	π
θ	U	$\frac{\overline{6}}{6}$	<u> </u>	9	$\frac{1}{2}$
-			4_	<u> </u>	
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\tan \theta$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	pas de déf

 ${\bf NB}$: d'autres valeurs s'en déduisent par symétrie. Exemple :

•
$$\frac{5\pi}{6} = \pi - \frac{\pi}{6}$$
 donc $\cos \frac{5\pi}{6} = -\cos \frac{\pi}{6} = -\frac{\sqrt{3}}{2}$.

•
$$\frac{3\pi}{2} = \frac{\pi}{2} + \pi$$
 donc $\sin(\frac{3\pi}{2}) = -1$.

Graphes



Remarque: Ce sont les graphes de fonctions y = trigo(x). Il ne faut pas les confondre avec le cercle trigonométrique.

Quelques formules (parmi beaucoup d'autre)

Définition de tangente:

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

L'identidé

$$\cos^2\theta + \sin^2\theta = 1.$$

En divisant tous les termes par $\cos^2 \theta$, on obtient $1 + \tan^2 \theta = \frac{1}{\cos^2 \theta}$.

Formules d'addition

$$\cos(a+b) = \cos a \cos b - \sin a \sin b, \quad \sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$\cos(a-b) = \cos a \cos b + \sin a \sin b, \quad \sin(a-b) = \sin a \cos b - \cos a \sin b$$

$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}, \quad \tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}$$

Formules de duplication: En posant a = b:

$$\cos(2a) = \cos^2 a - \sin^2 a$$
, $\sin(2a) = 2\sin a \cos a$, $\tan(2a) = \frac{2\tan a}{1 - \tan^2 a}$

Formules dérivées: Comme $\cos^2 a + \sin^2 a = 1$, on obtient :

$$\cos(2a) = 2\cos^2 a - 1 = 1 - 2\sin^2 a$$

En posant $t = \frac{a}{2}$:

$$1 + \cos t = 2\cos^2\frac{t}{2}, \quad 1 - \cos t = 2\sin^2\frac{t}{2}$$

Remarque: on peut trouver la valeur trigo de $\frac{\pi}{12}$ ou $\frac{5\pi}{12}$ à l'aide de ces formules. Exemple :

$$\sin\left(\frac{\pi}{12}\right) = \sin\left(\frac{\pi}{4} - \frac{\pi}{6}\right) = \sin\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{6}\right) - \cos\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{6}\right) = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} - \sqrt{2}}{4}.$$

2

Résoudre une équation trigonométrique

Ici, X est souvent une expression qui contient l'inconnue. Même en présence d'un « ou », tous les cas doivent être explicités : l'ensemble solution est la réunion des ensembles correspondants.

Type I. "trigo"=constante.

- $\sin(X) = b$: trouvons $X_0 \in [0, \frac{\pi}{2}]$ par une valeur remarquable, puis $X = X_0 + 2k\pi$ ou $X = \pi X_0 + 2k\pi$, pout tout $k \in \mathbb{Z}$.
- $\cos(X) = b$: trouvons $X_0 \in [0, \frac{\pi}{2}]$ par une valeur remarquable, puis $X = X_0 + 2k\pi$ ou $X = -X_0 + 2k\pi$, pout tout $k \in \mathbb{Z}$.
- $\tan(X) = b$: trouvons $X_0 \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ par une valeur remarquable ou symétrique, puis $X = X_0 + k\pi$ pout tout $k \in \mathbb{Z}$. [Il faut toujour éliminer toute valeur interdite, $X \neq \frac{\pi}{2} + k\pi$.]

NB. 1. $\sin(X) = b$ et $\cos(X) = b$ n'ont aucune solution si b > 1 ou b < -1.

2. Dès qu'on enlève la fonction trigonométrique, il faut tout de suite ajouter $+2k\pi$ pour le sin et le cos, ou $+k\pi$ pour la tangente.

Par exemple, pour résoudre $\sin(3x)=1/2$, on sait que $\sin(\pi/6)=1/2$. Alors $3X=\pi/6+2k\pi$ ou $3X=5\pi/6+2k\pi$, donc $X=\pi/18+\frac{2k\pi}{3}$ ou $X=5\pi/18+\frac{2k\pi}{3}$, pourtout $k\in\mathbb{Z}$. [IL NE FAUT PAS ajouter $+2k\pi$ directement à x, mais bien à 3x.]

Type II. "trigo"="trigo".

- $\sin(X) = \sin(Y)$: $X = Y + 2k\pi$ ou $X = \pi Y + 2k\pi$, pout tout $k \in \mathbb{Z}$.
- cos(X) = cos(Y): $X = Y + 2k\pi$ ou $X = -Y + 2k\pi$, pout tout $k \in \mathbb{Z}$.
- $\tan(X) = \tan(Y)$: $X = Y + k\pi$, et $X \neq \frac{\pi}{2} + k\pi$ et $Y \neq \frac{\pi}{2} + k\pi$, pout tout $k \in \mathbb{Z}$. [Il faut toujour éliminer toute valeur interdite.]

D'autres équations peuvent être transformées en ce type d'équation grâce aux identités trigonométriques et à la symétrie. Par exemple :

• L'équation $\sin(X) = \cos(Y)$ peut être réécrite sous la forme :

$$\sin(X) = \sin\left(\frac{\pi}{2} - Y\right)$$

grâce à l'identité trigonométrique $\cos(Y) = \sin\left(\frac{\pi}{2} - Y\right)$.

Cela nous ramène à une équation de type II, c'est-à-dire une équation de la forme :

$$\sin(A) = \sin(B).$$

- L'équation cos(X) = -cos(Y) peut être réécrite sous la forme : $cos(X) = cos(\pi + Y)$.
- L'équation $\sin(X) = -\sin(Y)$ peut être réécrite sous la forme : $\sin(X) = \sin(\pi + Y)$.
- L'équation $\sin(X) = -\cos(Y)$ peut être réécrite sous la forme :

$$\sin(X) = -\sin(\frac{\pi}{2} - Y) = \sin(\frac{3\pi}{2} - Y).$$